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ABSTRACT
Earth observation (EO) has been a key task for satellites since the
first time a satellite was put into space. The temporal and spa-
tial resolution at which EO satellites take pictures has been in-
creasing to support space-based applications, but this increases the
amount of data each satellite generates. We observe that future
EO satellites will generate so much data that this data cannot be
transmitted to Earth due to the limited capacity of communication
that exists between space and Earth. We show that conventional
data reduction techniques such as compression [126] and early dis-
card [41] do not solve this problem, nor does a direct enhancement
of today’s RF-based infrastructure [133, 153] for space-Earth com-
munication. We explore an unorthodox solution instead - moving
to space the computation that would have happened on the ground.
This alleviates the need for data transfer to Earth. We analyze ten
non-longitudinal RGB and hyperspectral image processing Earth
observation applications for their computation and power require-
ments and discover that these requirements cannot be met by the
small satellites that dominate today’s EO missions. We make a
case for space microdatacenters - large computational satellites
whose primary task is to support in-space computation of EO data.
We show that one 4KW space microdatacenter can support the
computation need of a majority of applications, especially when
used in conjunction with early discard. We do find, however, that
communication between EO satellites and space microdatacenters
becomes a bottleneck. We propose three space microdatacenter-
communication co-design strategies –𝑘−𝑙𝑖𝑠𝑡-based network topol-
ogy, microdatacenter splitting, and moving space microdatacen-
ters to geostationary orbit – that alleviate the bottlenecks and en-
able effective usage of space microdatacenters.
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1 INTRODUCTION
The ability to launch satellites into space and then control them to
accomplish a wide variety of tasks such as navigation [43], com-
munication [51], forecasting [115], early warning [107], reconnais-
sance [102], broadcasting [99], scientific research [33], signals in-
telligence [104, 154], weapons delivery [62], and Earth observa-
tion [123] has been one of the most wondrous achievements of hu-
mankind.These satellites have different volumes (0.01m3 to 916m3)
and weights (1.26 kg to 420 000 kg) and are placed into outer space
at different altitudes above the Earth (274 km to 35 786 km) in dif-
ferent orbits (low Earth orbit [34], geostationary orbit [139], sun-
synchronous orbit (SSO) [17], etc.) using launch vehicles [23, 37].
These satellites have different sources of power generation (none -
for passive satellites [122], solar panels [119], radioisotopic ther-
moelectric generators [118], etc.) to support their functionality,
use transponders [42] for communication to Earth-based ground
stations [85], and work either alone or together as a group (often
called a constellation [145]).

Earth observation (EO) has been a key task for satellites since in-
ception. EO satellites image the Earth using camera [123], radar [55],
lidar [112], photometer [137], or atmospheric instruments [21] in
order to support a variety of scientific [19], military [104, 154], and
commercial [42] applications. As imaging satellites, they are often
placed in low Earth orbit for high data resolution (though some
EO satellites are placed in a geostationary orbit [139] for uninter-
rupted coverage or in a SSO for consistent lighting during imag-
ing [18]), and transmit their images to Earth-based ground stations
for further processing. Following Sputnik-1 [113], the first satel-
lite ever launched, thousands of EO satellites have been placed in
space to support different applications [93]. A vast number of fu-
ture satellite launches are also devoted to Earth observation [84]
to support a fast growing Earth observation industry [84].

A key parameter for an EO satellite is the resolution at which
it takes its pictures. Increasingly Earth observation space missions
are being plannedwith aggressive goals of spatial and temporal res-
olution (Section 3) to support emerging EO applications such as for-
est fire detection [147], realtime video [131], conflict zone monitor-
ing [10], tasking [27], warning systems for early responders [157],
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(a) A conventional EO Constellation. At
high resolutions, the amount of EO data to
be downloaded becomes prohibitive.

(b) Compression and Early Discard reduce
the amount of data to be downloaded, but
it is still prohibitive at high resolutions.

(c) An EO Constellation with a SµDC.
SµDCs process in-space the data generated
by EO Constellations

Figure 1: SµDCs reduce or eliminate the need to satellite download data to Earth-based ground stations.

and tracking of events such as Earthquakes [160], hurricanes [38],
and tornadoes [30], as well as objects such as aircraft [66] and mis-
siles [14]. Even traditional EO applications such as flood monitor-
ing [155], traffic monitoring [75], mapping [31], etc., seek higher
resolutions requirements now. Mapping a narrow path in a dense
urban area easily requires sub-meter resolution [159], for example.
Fig. 2 shows how spatial resolution of EO satellites has improved
over the decades.

In this paper, we observe that the amount of data that future
high resolution Earth observation satellites will generate will be so
massive that data cannot simply be transmitted to the Earth con-
sidering present or projected ground station capacity (Section 3).
The limited number of ground stations on the Earth limit the to-
tal amount of data that can be transmitted. At current costs, the
monetary cost of transmission will also be prohibitive (Section 3).

We first evaluate two techniques (Section 4) that have been pre-
viously proposed to reduce the amount of data transmitted to the
Earth - compression [126] and early discard [41] - to address the
problem (Fig. 1b). We show that compression or early discard may
not provide sufficient data reduction formany high resolution space
missions either alone or in conjunction. We also consider (Sec-
tion 4) if today’s RF-based communication infrastructure can be
enhanced to support high resolution space missions. We show that
practical RF-based satellite antennasmay not support the needs for
many such missions. The number of channels needed to be sup-
ported on the ground may also be unrealistic.

We explore an unorthodox solution instead (Section 5) - when-
ever possible, move the computation that would have happened on
the ground to space itself. If we are able to perform the computa-
tion in space itself, only insights, not raw sensor data, may need to
be transmitted to the ground alleviating the need for massive data
transfer to the ground for high resolution applications.

We analyze ten emerging non-longitudinal RGB and hyperspec-
tral image processing Earth observation applications that process
high resolution satellite data. We estimate for these applications
their computation and power requirements at different resolutions.
We find that small satellites which dominate Earth observation to-
day, cannot support many of these applications, especially at high
resolutions, as these satellites cannot generate enough power to
support the power requirements of these applications. While early
discard helps reduce the power requirements, the reduction is not
enough to support many of these applications.

With the above in mind, wemake a case for space microdatacen-
ters (SµDCs) for high resolution Earth observation space missions
(Section 6). A SµDC (Fig. 1c) is a relatively large computational
satellite whose primary task is to support in-space computation
on data generated by the observation satellites. The power gener-
ation capability for the SµDC is commensurate with the amount
of computation supported by the SµDC. Inter-satellite links (ISLs)
are used to offload the data generated by the observation satellites
to the SµDC.

We consider the SµDC requirements for a 64-satellite constella-
tion of Earth observation satellites for 4KWSµDCs based onNVIDIA
RTX 3090-class processors. We show (Section 6) that one 4 kW
SµDC can support the computation needs for a majority of our
applications for most resolutions, especially when used in conjunc-
tion with early discard.

We do find, however, that communication between the observa-
tion satellites and the SµDCs becomes a bottleneck (Section 7). We
propose three SµDC-communication co-design strategies – 𝑘−𝑙𝑖𝑠𝑡-
based network topology, SµDC splitting, and moving SµDCs to
geostationary orbit – to alleviate this bottleneck and effectively use
these SµDCs (Section 8). Finally, we analyze the impact of place-
ment and chip architecture on SµDC design and performance.

This paper makes the following contributions:

• We show that future high resolution Earth observation mis-
sions will generate so much data that the generated data
cannot be transmitted to the Earth considering present or
projected ground station capacity or considering the trans-
mission costs.

• We show that compression, early discard, or antenna scaling
have limited effectiveness at addressing the problem.

• We explore moving the Earth-based computation that com-
putes on EO data into space and show that this computa-
tion cannot be performed on the typically small EO satellites
since these satellites cannot meet the corresponding power
requirements.

• We make a quantitative case for SµDCs that are designed
to run the Earth-based computation in space. We show that
a 4 kW SµDC can support a majority of the applications if
communication bottlenecks can be alleviated.

• We present multiple SµDC-communication co-design strate-
gies (new connection topologies, SµDC splitting, moving
SµDCs to geostationary orbit) that alleviate the communi-
cation bottlenecks of SµDCs.
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2 BACKGROUND AND RELATEDWORK
In this work, we will focus on Low-Earth orbit (LEO) Earth ob-
servation satellites — satellites with orbital periods of < 128min
and with low eccentricity (i.e., near-circular orbits), resulting in al-
titude < 2000 km. We focus on LEO EO satellites because a) EO
satellites are often placed in LEO orbit in order to improve the spa-
tial resolution of the generated imagery, and b) The number and
size of LEO EO satellite constellations has been increasing [35],
in large part due to significant decreases in LEO satellite launch
costs [46, 72] as well as due to emergence of new EO applications
(Section 5).
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Figure 2: Improvements in imaging technology have led to increas-
ing EO satellite spatial resolutions. The massive and expensive Key
Hole line of National Reconnaissance Office (NRO) spy satellites
greatly outperform commercial and scientific EO satellites, but also
see significant improvements in spatial resolution over time.

Unlike the EO data generation rate, which is increasing rapidly,
there is limited opportunity to increase RF downlink capacity [121].
As such, downlink data rates have increased less than data genera-
tion rates (Fig. 3). Several approaches have been proposed to deal
with this downlink deficit. Lossless and high quality lossy com-
pression can be used to decrease the number of bits needed to
represent each pixel downlinked. More aggressively, data can be
discarded — either not downlinked or not even generated. This is
done commonly in practice (e.g., Dove does not image the ocean);
prior work [41] also propose to do it via image processing (e.g., de-
tect and discard images occluded by clouds). Our work does not
focus on reducing the amount of EO data to be sent to the appli-
cations running on Earth; we move the applications themselves to
space.

The closest relatedwork is the deployment of HPE’s SpaceBorne
and SpaceBorne-2 computers to the International Space Station
(ISS). These computers have been used to compute on data gen-
erated in space which had historically been slow to downlink. For
example, astronauts have used these computers to monitor their
DNA for mutation due to radiation exposure. This decreased the
amount of time needed to analyze astronautDNA from 12 h (mostly
in downlink time) to 6min [142]. Unlike our work, the HPE ISS
computers do not process EO data from EO satellites.

Another closely related work is by Orbits Edge [106], a start-up
that is trying to build frames to send servers to outer space. Limited
information is available about their design.

Figure 3: Satellite downlink capacity has grown over time, due to
improvements in communication system design and changes in fre-
quency bands used, however, RF downlink capacity is limited by
bandwidth constraints.

To the best of our knowledge, no prior work makes a quantita-
tive case for SµDCs. Ours is also the first work to analyze the com-
putation requirements for a SµDC, the associated communication
bottlenecks, and the SµDC-communication co-design approaches
to address the bottlenecks.

3 DATA REQUIREMENTS OF HIGH
RESOLUTION EO SPACE MISSIONS

Earth observation (EO) spacemissions are increasingly being planned
with aggressive goals of spatial and temporal resolution. Table 1
lists some of the current and planned LEO EO constellations - spa-
tial resolution targets are are now routinely sub-meter. Satellites
have similarly started emerging with continuous imaging goals
(Earthnow). These aggressive goals have been the result of impres-
sive advances in addressing challenges in imaging at fine resolu-
tions, including the diffraction limit of telescopes, dispersion due
to diffraction by the atmosphere, orbiter motion compensation of
∼ 8 km s−1, etc. On larger satellites, such as the NRO’s KH-11, a
2.4mmirror has a diffraction-limited resolution of 0.05 arcseconds,
or, at a 250 km altitude, a spatial resolution of 0.6 cm [52]. Smaller
satellites can produce 10 cm resolution imagery by processing mul-
tiple coarse-resolution (e.g., 40 cm) images [60].

Considering the aggressive resolution targets, the amount of
data these missions will generate will be massive. Fig. 4a shows
the data generation rate at different resolutions assuming a global
coverage target

(
i.e., surface area of Earth

spatial res. · 1
temporal res

)
: at fine spatial

resolutions, tens of Tbit s−1, and at fine spatial and temporal reso-
lutions, tens of Pbit s−1 of data needs to be generated.

Today’s LEO EO constellations use RF downlinks to transmit
data from orbit to Earth ground stations. Using Planet’s Dove con-
stellation’s 96MHzX-band channels [42] as a baseline, Fig. 4b shows
the number of concurrent, continuous Dove-like channels needed
to transmit all of the data from space to Earth. At fine resolutions,
this is many orders of magnitude more channels than can cur-
rently be supported by Earth’s ground stations. Table 2 shows the
number and continental locations of ground stations operated by
commercial Ground Station as a Service providers. While many of
these ground stations can support multiple simultaneous channels,
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Table 1: LEO EO Constellations

Company Name Constellation Name # Satellites Form Factor Imaging Spatial Resolution Temporal Resolution ”Goals” or Mission
SatRev Stork 14 3U RGB+Near Infrared 5 m 6 Hour Hosted Payload Missions
SatRev REC 1024 6U RGB 50 cm 30 Min Insurance, land survey, precision farming, smart cities, imagery intelligence, early warning systems support, assistance of missile homing systems
Planet Dove 159 3U RGB+Hyperspectral 3 m 24 Hour Daily imaging of Earth’s land
Planet SkySat 21 100 kg RGB+Hyperspectral 50 cm <24 Hour Sub-daily high resolution imaging of any point on Earth, stereo video for up-to 90 seconds
Spacety Spacety SAR 56 185 kg C-Band SAR 1 m ‘High Frequency Revisits’ Real-time SAR imagery of every point on Earth, day and night, rain or shine.
Chang Guang Jilin-1 300 225 kg Color Video, PAN, MSI 1-1.3 m (video), 75 cm (PAN), 3-4 m (MSI) 2-3.3 days
Spacety ADASPACE 192 185 kg RGB, hyperspectral 1m (RGB), 4m (hyperspectral) < 24 h A global, minute-level updated Earth image data network
Space JLTZ Gemini 378 6U Multispectral 4 m 10 Min
Planet Pelican 32 150 kg to 200 kg RGB 0.29 m 30 Min Provide reesponsive, rapid, very-high resolution imagery
Airbus EarthNow 300 230 kg Color Video 1m Continuous Hurricane monitoring, fisheries management, forest fire detection, crop-health monitoring, conflict zone observation
LeoStella BlackSky 18 50 kg RGB Imagery 1m 1 h Hourly revisit time for most major cities
Earth-i Vivid-i 15 100 kg RGB Color Video 60 cm, 1m < 12 h First constellation to provide full-color video

Table 2: Number and location of Ground Station as a Service
(GSaaS) providers’ ground stations.

Ground Stations
Service N. America S. America Africa Europe/MENA Asia/Pacific Antarctica Total

AWS Ground Station [71] 2 1 1 3 4 0 11
Azure Ground Stations [11] 4 1 3 6 5 0 19
KSat Ground Network Services [83] 4 2 4 9 6 1 26
Viasat Real-Time Earth [149] 4 1 2 4 3 0 14
US Electrondynamics Inc [146] 2 0 0 0 0 0 2
Swedish Space Corporation [140] 3 2 0 2 3 0 10
Atlas Space Operations [8] 4 0 1 3 5 0 13
Leaf Space [86] 1 0 1 8 4 0 14
RBC Signals [135] 12 2 3 18 16 0 51

they are ultimately limited by both number of antennas (typically
< 100, e.g., KSat’s Antarctica ground station has 20 antennas [59],
and its entire network of 26 ground stations has only 270 anten-
nas [83]) and limited S-band and X-band bandwidth. Thus, even
with a planned doubling of the number of ground stations over
the next 3 years [153], the number of downlink channels is orders
of magnitude too low to support high resolution LEO EO missions.

(a) Constellation Data Genera-
tion Rates.

(b) Constellation Downlink
Requirements

Figure 4: At fine resolutions, data generation of LEO EO constel-
lations becomes prohibitive. The number of concurrent Dove-like
220Mbit s−1 [42] channels needed to support constellation data gen-
eration rates grows enormously.

Thescarcity of ground stations also leads to high prices for ground
stations. At the price-points of three leading services (AWS, Azure,
and KSat), which charge $3 per minute per channel, the cost of
downlinks to support a fine resolution LEOEO constellationwould
be in the millions of dollars per minute! Thus, at current costs, the
monetary cost of transmission of high resolution EO data will also
be prohibitive.

Another view of this phenomenon is presented in Fig. 5. In 5a,
we present the ‘downlink deficit’ (DD), or portion of generated
data whichmust be discarded due to downlink capacity limitations,
as a function of the number of downlink channels available to a
satellite per orbital revolution. As number of channels per revolu-
tion increases, downlink deficit decreases. Different curves repre-
sent different spatial resolutions (for a given satellite, these curves

(a) Downlink Deficit (DD)

(b) Time spent downlinking (per satellite per revolution)

Figure 5: Downlink Deficit and time spent downlinking for an
EO satellite at different spatial resolutions, assuming an 220Mbit/s]
downlink channel [42]. These figures assume a 95% early discard
rate (i.e., only 1 in 20 images is downlinked to Earth), as in [41].

are invariant with respect to temporal resolution). 5b depicts the
amount of time each satellite spends downlinking each revolution.
As this time increases, so too, does the monetary cost of transmit-
ting data to Earth. The results show that the amount of data gen-
erated by high resolution EO missions lead to prohibitively high
downlink deficit or high cost or both.

4 EFFECTIVENESS OF DATA REDUCTION
AND TRANSMISSION TECHNIQUES

We first calculate the effective compression ratio (ECR) required to
support various imaging resolutions of an EO mission for a given
downlink capacity. ECR, in this case, is the data reduction ratio
achieved by combination of early discard and image compression.
Let’s optimistically assume that sufficient downlink capacity exists
for 3m-1 d resolution RGB imagery of all of Earth – Planet’s cur-
rent Dove constellation (Table 1) provides 3m-1 d resolution RGB
imagery of Earth’s land. Fig. 6 shows the ECR needed to support
various resolutions using this downlink capacity. The results show
that fine resolutions require ECRs in the the thousands to hundreds
of thousands. Such ECRs are likely unachievable in most settings.

Table 3 shows achievable rates of early discard and their associ-
ated effective compression ratios (ECR) for several types of early
discard. These rates have been calculated using gross Earth charac-
teristics (50% images correspond to night, 70% images correspond
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to ocean, 10% of Earth is uninhabited, built-up areas - those ar-
eas which contain vertical construction - account for 2% of Earth’s
area, 23 of Earth is covered by cloud) for optimistic assumption or-
bital dynamics (e.g., a non-dawn/dusk circular orbit for night data,
equatorial orbit instead of polar orbit for habitation data, etc.). As
the results show, the achievable early ECRs are far lower than the
required ECRs reported in Figure 6. Note that some forms of early
discard may be combined (e.g., imaging only built-up areas during
the day) to achieve higher ECRs. However, this is limited by condi-
tional dependencies (e.g., cloud distribution is dependent on land
vs ocean, uninhabited implies non-built up, etc.).

We similarly estimate realistic ECR values for EO data when
data compression algorithms are used. We ran different data com-
pression algorithms on theCrowdAIMappingChallenge [98] dataset
of satellite imagery of built-up areas of Earth. One thousand im-
ages were randomly selected from the dataset after removing im-
ages which did not display a full scene1. Analysis of compression
of SAR imagery used the xView3 validation dataset [108]. Table 4
shows the results.The results show that achievable compression ra-
tios using lossless image compression are limited to < 4× for RGB
imagery. This is in line with previous studies on lossless compres-
sion of satellite imagery [152]. High-quality ‘quasi-lossless’ lossy
compression, also results in compression ratios of only 10−20× [12].
These numbers are off from the required ECRs by several orders of
magnitude.

Figure 6: Effective compression ratio needed to downlink data
from different target resolutions given downlink sufficient for 3m-
1 day spatial and temporal resolution.

Assuming independence of early discard and compression (e.g.,
by discarding images of non-built-up areas and images at night),
the ECR of combined compression and early discard is ≤ 4× 100 =
400. This best case ECR is still up to 3.5 orders of magnitude short
of the ECR needed for some of the fine resolution targets. These
results show that compression and early discard have limited ef-
fectiveness at addressing the problem of too much data that will
generated by future high resolution EO missions.

Another way to decrease the downlink deficit is to increase the
amount of information which can be moved from space to Earth.
While number of ground stations is anticipated to double from 2021
1the dataset contains images which are padded to full resolution by a black back-
ground. These images were removed as they can achieve unrealistically high com-
pression ratios.

Table 3: Achievable early discard Rates and their associated
ECRs

Metric None Night Ocean Uninhabited[128] Non-Built-Up[45] Cloudy[80]
Early Discard Rate 0 0.5 0.7 0.9 0.98 0.67
ECR 1 2 3.4 10 50 3

to 2026 [153], doubling the number of ground stations leads to no
more than proportional increase in downlink capacity.

Satellite designers can also increase downlink capacity by mod-
ifying the design of their satellites RF communications. RF down-
links aremodeled as additivewhite Gaussian noise communication
channels [133], and are thus subject to the Shannon-Hartley the-
orem [130], which relates channel capacity, 𝐶 , (in bit s−1) to the
channel bandwidth, 𝐵, (in Hz), and the signal-to-noise ratio (SNR)
at the ground-station:

𝐶 = 𝐵 log2 (1 + SNR) .
Note that 𝜕𝐶

𝜕𝐵 = log2 (1 + SNR) and 𝜕𝐶
𝜕𝑆𝑁𝑅 ∝ 1

𝑆𝑁𝑅 log(2)+log(2) .
Thus, when SNR >> 0,𝐶 scales linearly with 𝐵, but with the recip-
rocal of the SNR. This is called a ‘bandwidth limited’ regime, and
satellite downlinks are squarely in this regime (e.g., Dove’s ground
stations experience SNR ∼ 19[42]).

As the electromagnetic spectrum is a limited natural resource,
satellites cannot simply scale their bandwidth, which is allocated
to them by national and international governing bodies, such as
the Federal Communications Commission (USA), and the Interna-
tional TelecommunicationUnion.Thus, satellite designers can only
increase RF channel capacity by increasing signal strength. This
can be achieved in one of two ways: 1) increase the power output
by the antenna, and 2) increase the directionality, or gain, of the
antenna. Increasing antenna output power requires increasing the
input power, while increasing the antenna gain requires increas-
ing the antenna’s aperture size, and thus increasing the physical
size of the antenna for common satellite antenna types (i.e., patch
antennas, helical antennas, and parabolic antennas).

Fig. 7 shows the infeasibility of meeting fine spatial resolution
targets through scaling of RF downlinks in a bandwidth limited
communications regime. Both a 2 kW antenna input power and a
30m antenna fall far short of meeting the downlink capacity re-
quirements of a 1m resolution target, let alone < 1m resolutions.

Figure 7: Increasing channel capacity bymodifying satellite anten-
nas requires exponential increases in power consumption and an-
tenna size.

The number of channels needed to be supported on the ground
may also be unrealistic. Fig. 4b shows that the number of channels
needed is many orders of magnitude greater than the number of
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Table 4: Compression ratios achieved using lossless compression
techniques for RGB satellite imagery from the Crowd AI Mapping
Challenge [98], and SAR imagery from the xView3 [108] dataset.

Imagery JPEG2000 LZW Zip RLE PNG CCSDS [151]
RGB 3.93 2.14 2.38 1. 2.49 1.88
SAR 966 469 2436 64 924 9.89

channels which can be supported by current or near future ground
stations.

5 MOVING GROUND-BASED COMPUTATION
INTO SPACE

We explore an unorthodox solution instead - whenever possible,
move the data processing computation that would have happened
on the ground to space. If we are able to perform the computation
in space, only insights, not raw sensor data, may need to be trans-
mitted to the ground alleviating the need for massive data transfer
to the ground for high resolution applications.

To determine the feasibility of moving ground-based computa-
tion into space, we analyzed a collection of representative Earth-
based applications that process high resolution satellite image data.
We consider only ‘memoryless’ applications which process a sin-
gle frame at a time using only the single frame’s data. Some EO
imagery applications are longitudinal — they assess changes to a
location over days, months, or even years, and thus require signif-
icant data storage.

Table 5 lists our applications. Air Pollution Prediction (APP) is
used to monitor urban areas and other areas where air pollution
is a concern. Missions supported by NASA and the California Air
Resources Board use satellite imagery to predict air pollution. Satel-
lite imagery-based crop monitoring (CM) is used to identify how
much of a crop is grown in a region, which is important informa-
tion for commodities markets, and to monitor crop growth and
performance on a macro scale. Satellite imagery is used to perform
Flood Detection (FD) and flood severity estimation. Satellites can
provide timely identification of fast moving flash floods [144]. In
Forage Quality Estimation (FQE), satellite imagery is used to esti-
mate the quality (quantity) of animal forage for use by ranchers,
shepherds, etc. Urban Emergency Detection (UED) is a multifac-
eted application which attempts to identify emergent life threat-
ening phenomenon in built-up and urban areas, enabling timely
emergency response and public awareness. Processing in space en-
ables low latency detection, an important metric for this applica-
tion. Aircraft Detection (AD) enables detecting and classifying air-
craft from satellite imagery. While 3m resolution is sufficient for
commercial airliners and large, manned combat aircraft, < 1m res-
olutions are likely required to detect and classify small drones and
loitering munitions which have played impactful roles in recent
battlefields [150]. LEO satellites provide benefit over aircraft for
this role in that they do not violate restricted or contested airspace.
Panoptic Segmentation (PS) [81] is an emergingmachine vision ap-
plication which attempts to perform both semantic segmentation
of an image, as well as identification of individual objects within
the segments. It can be used to support numerous other applica-
tions. In Oil Spill Monitoring (OSM), waterways are monitored for
signs of spills of oil and refined petroleum products. As oil is often

shipped via intercontinental shipping lanes, satellites offer timely
and inexpensive (relative to aircraft) monitoring of sea-lanes. Traf-
fic Monitoring (TM) detects moving vehicles due to the offset of
different wavelengths that moving objects produce, causing a spe-
cific reflectance relationship in RGB channels. This enables effec-
tive vehicle detection with very low compute overhead. Land Sur-
face Clustering (LSC) is an unsupervised machine learning tech-
nique which attempts to segment imagery to detect changes in
a landscape over time. Satellites, which periodically revisit loca-
tions with little to no additional cost per revisit (unlike aircraft),
are thus a good fit for this application. The majority of the applica-
tions are machine learning based, with most using deep learning.
The variety of kernels and architectures lead to a wide spread in
computational complexity, with over 105× difference in floating
point operations per pixel between aircraft detection and traffic
monitoring.

To estimate the performance and power requirements of these
application, we run them on Jetson AGX Xavier (32GB AGX) that
features an NVIDIA Volta GPU with eight streaming multiproces-
sors. The Jetson AGX Xavier has been proposed for use in cubesat-
class EO satellites [6] due to its good radiation tolerance [120]. We
installed JetPack 5.0.1 with L4T 34.1.1, which supports CUDA ver-
sion 11.4.315. To maintain compatibility with the hardware and
software environment, we installed the appropriate cuDNN ver-
sion 8.6.0.166 and TensorFlow version 2.11. This configuration al-
lowed us to successfully run all but one of our applications on the
Jetson AGX Xavier. We ran the inference 100 times, for different
batch sizes, and employed the TegraStats tool to measure the aver-
age GPU utilization. To approximate the GPU power consumption,
we used the utilization data along with the reported maximum
power of Jetson AGX Xavier, an accepted technique for estimat-
ing embedded GPU power consumption [20]. Table 6 shows the
performance and power of our applications on Jetson AGX Xavier,
including pixels processed s−1W−1.

We use the performance and power numbers of applications on
Jetson AGX Xavier to determine how much compute and power
generation a satellite must support to run a given application in
space. Fig. 8 shows these requirements for a single satellite at 0.10m
to 3m resolutions and 0-99% early discard rates. As in [41], each
ground frame at 3m is represented by a single 4K RGB image; scal-
ing resolution holds the ground frame size constant by increasing
the number of pixels per frame. Thus, as resolution becomes finer,
the number of pixels needed to be processed each second increases.
The horizontal lines in the graph represent the number of pixels
per second needed to be processed to run the applications at a
given resolution and early discard rate. The curves (lines with non-
zero slope) represent the number of pixels per second that can be
supported for a given power budget (𝑥-axis) with power efficiency
equal to a Jetson AGX Xavier. Where a curve intersects a horizon-
tal bar gives the amount of power needed to support the appli-
cation in a satellite. We assume computational complexity scales
linearly with number of pixels, as is decidedly the case in TM, and
is often the case in deep learning based image processing [57].

The results in Fig. 8 show that only one application can be sup-
ported at 3m resolution with a power budget typical of a small
satellite (Table 7) without a high early discard rate. No application
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Table 5: Applications which consume satellite imagery

Application Description Imagery Kernel FLOPs/Pixel Application Users / Providers
Air Pollution Prediction (APP) Predict air pollution levels using CNN RGB Inception-ResNet 3317 NASA [141], CARB [26]
Crop Monitoring (CM) Identify type and quality of crops Hyperspectral Inception v3 67113 Ministry of Agriculture of China [156], ESA [48],
Flood Detection (FD) Identify floods and assess flood severity RGB DenseNet 178969 GDACS [54], NASA [100]
Aircraft Detection (AD) Identify stationary and moving aircraft from satellite images using CNN RGB Custom 4-layer CNN 7387714 Orbital Insights [105], militaries
Forage Quality Estimation (FQE) Estimate foorage quality for use in agriculture and animal husbandry RGB EfficientNet based 8491 USDA [50], UN [89]
Urban Emergency Detection (UED) Fire, Traffic Accident, Building Collapse Detection RGB MobileNet v3 4484 NASA [25], USDA [114]
Panoptic Segmentation (PS) Simultaneous detection of countable objects and backgrounds RGB Mask RCNN 6874279 Crop Montioring [110], urban classification [40], environmental monitoring [39]
Oil Spill Monitoring (OSM) Deep water environmental monitoring Hyperspectral VGG19 390625 KSAT, NOAA, ESA
Traffic Monitoring (TM) Detect moving vehicles via blue reflectance RGB Custom DSP algo using ratios between channels 51 DoT [94], ESA [103]
Land Surface Clustering (LSC) Unsupervised segmentation of land/land cover change detection Hyperspectral K-Means (𝐾 = 4) 15984 NASA [7], ESA [16]

Table 6: Application results for RTX 3090 and Jetson AGX Xavier. Results are for optimal batch sizes. PS could not be mapped to Jetson AGX
Xavier.

RTX 3090 Jetson AGX Xavier
App Name Pow (W) Util (%) Infer time (s) kPixel s−1 W−1 Pow (W) Util (%) Infer time (s) kPixel s−1 W−1

Air Pollution 119 25 0.59 1168 4.04 27 3.07 825
Crop Monitoring 222 42 1.57 395 12.5 84 16.0 86
Flood Detection 325 88 5.53 307 13.8 92 78.4 64

Aircraft Detection 124 6 0.26 74 2.62 18 17.5 39
Forage Quality Estimation 129 27 0.56 843 5.13 34 3.29 449
Urban Emergency Detection 266 72 2.04 569 12.6 17 17.4 177

Oil Spill Monitoring 347 98 3.84 231 14.6 97 80.2 33
Traffic Monitoring 19 < 1 2.72 2597 1.00 < 1 0.05 9630

Land Surface Clustering 108 2 0.35 2175 2.21 1 0.6 5792
Panoptic Segmentation 160 80 7.81 20 X X X X

Figure 8: Power needed to meet compute requirements for EO ap-
plications on a given satellite assuming zero early discard and Jet-
son AGX Xavier as the on-satellite computer architecture. Horizon-
tal bars represent the performance needed to meet various spatial
resolution targets: 3m, 1m, 30 cm, and 10 cm, at 0%, 50%, 95%, and 99%
early discard rate (early discard rate).

can be supported by a small satellite at fine resolutions where they
require hundreds to hundreds of thousands of watts.

Evenwith aggressive early discard (99%), many applications still
require hundreds of Ws at fine resolutions. Aircraft detection re-
quires > 400W of compute per satellite at 30 cm. At 99% early
discard rate, several applications cannot be supported at 1m on
a cubesat or cubesat with deployable solar panel. At 10 cm, several
applications cannot even be supported on a typical 100 kg micro-
satellite. Further, for many applications, 99% early discard rate is
unrealistic, as applications such as OSM, CM, AD, FD, FQE, etc,
may be interested in large portions of Earth’s surface.

To summarize, the above results show that while moving Earth-
based computation (that computes on EO data) into space may
be promising, this computation cannot be performed on the typi-
cally small EO satellites themselves (Table 7) since the correspond-
ing power requirements cannot be met by most of these satellites.
While some large satellites may be able to natively support some of

Table 7: Satellite capabilities by weight class. Applications
supported at 10 cm spatial resolution for 0% and 95% early
discard rates (in parentheses).

Satellite Class Examples Power Generation Apps Supported at all res. (at 0.95 ED)

Cubesat Swarm Technologies 1W to 10W [4, 127, 148] TM (APP, UED)
Cubesat (Deployable Panels) Dove, REC, Stork, Gemini 10W to 30W [44, 138] (FQE, LSC)
< 100 kg SkySat, BlackSky 55W to 210W [77, 124] APP, UED, FQE, LSC (CM, FD)
< 1000 kg Vivid-i, EarthNow, ADASPACE, Jilin-1, Spacety 200W to 6600W [36, 68, 70] CM, FD (OM)
Space Station ISS 240 kW [53] OM, AD, PS

the applications, many of the emerging LEO EO constellations are
based on microsat and cubesat class satellites, including ones with
< 1m spatial resolutions (Table 1), as well as the largest current
and planned EO constellations. As such, an alternate approach to
computing in space must be developed.

6 A CASE FOR SPACE MICRODATACENTERS
With the above in mind, we make a case for space microdatacen-
ters (SµDCs) for high resolution Earth observation space missions.
A SµDC is a relatively large computational satellite whose primary
task is to support in-space computation on data generated by the
observation satellites.The power generation capability for the SµDC
is commensurate with the amount of computation supported by
the SµDC. Inter-satellite links (ISLs) are used to offload the data
generated by the observation satellites to the SµDC.

To support in-space computation of Earth-based applications,
one could also simply make each EO satellite much bigger (i.e.,
increase its power generation and computation capability). How-
ever, a LEO EO constellation supported by SµDCs offers several ad-
vantages over a homogeneous constellation of EO satellites large
enough to support the applications natively. First, by concentrat-
ing compute onto SµDCs, EO satellite design – satellite bus design,
heat dissipation, power generation and power management, etc, –
is simplified allowing continuing low mission costs [41] which is
critical for growth of the EO industry. Second, changes in compu-
tational requirements (e.g., an improved neural network model, in-
creased accuracy requirements, change in application, etc) would
be hard to support in a homogeneous constellation, while they
can be supported by adding additional SµDCs in our model. Third,
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SµDCs act as data integrators, minimizing the impact of variation
in data generation (not all EO satellites within their constellation
would generate the same amount of data - e.g., land vs ocean, day
vs night, cloudy vs not).Thus, average case design for SµDCswould
be more effective than average case design for a homogeneous con-
stellation. Finally, SµDCs may also be used to provide space-based
cloud computing, supporting excess compute requirements of mul-
tiple constellations, including from multiple organizations.

Fig. 9 shows the number of 4 kW SµDCs needed to support a
constellation of 64 EO satellites for various resolutions and early
discard rates. We assume a 4 kW SµDC for this study since Orbits
Edge SATFRAME 445 [106] uses a 19-inch server rack, which can
easily support up to 4 kW of compute2 We assume no images are
downlinked to Earth — all are processed in space. These results
have been generated using measured power and delay numbers on
a RTX 3090 (Table 6). RTX 3090 is a state-of-the-art GPU that pro-
vides high energy efficiency for image processing workloads [74],
and support high productivity programming paradigms [61]. We
used CUDA version 11.7 along with cuDNN version 8.9.0 and the
supported TensorFlow version 2.12. For the Panoptic Segmenta-
tion application, which uses Mask R-CNN, we employed the Mask
R-CNN [63] implementation available in the application’s repos-
itory. To run this specific application on the RTX 3090, we used
TensorFlow-GPU version 1.14, ensuring compatibilitywith the pro-
vided Mask R-CNN implementation. For all of the DNNs, we per-
formed inference 100 times, for different batch sizes, and utilized
the Python NVML (pynvml) library to measure the average GPU
utilization and average GPU power. In addition, we used the timing
library to measure the inference time. We ported the TMworkload
from a CPU implementation to a CUDA implementation. We im-
plemented LSC using k-means in CUDA. Batch-sizes which maxi-
mize energy efficiency (maximize pixelsW−1 s−1) are used. We as-
sume a ground track frame period of 1.5 s, meaning each satellite
in the constellation generates one image every 1.5 s. We assume
that early discard is applied uniformly over all generated images.

The results show that one 4 kW SµDC can support the computa-
tion needs for a majority of our applications for most resolutions,
especially when used in conjunction with early discard. For exam-
ple, only a single 4 kW SµDC is needed to support all but one appli-
cation at 1m with 95% early discard rate. At finer resolutions and
low early discard rates, multiple 4KW SµDCs may be needed. In
some cases, SµDCsmay need to be significantly larger (e.g., 256 kW
“Space Station” class SµDCs). While the number of SµDCs needed
to support some applications at fine resolutions is high, the costs
of downlinking data to Earth are prohibitive. Even with 99% early
discard, downlink at current commercial rates would cost the con-
stellation operator over $1000 per minute at 10 cm resolution. But
at that early discard rate, eight out of ten applications can be sup-
ported with only a small number of SµDCs computing in space.
Launching these SµDCs, especially at projected future launch costs,
will invariably be cheaper than paying significant recurring costs
for data downlink.

2The power budget of 4KW is for computing, not the entire satellite. Other compo-
nents that draw significant power include ISLs, ground communication, flywheel-
based attitude control, radiation-hardened flight controller, battery heating, propul-
sion, and active thermal management. We estimate that these components may add
up to 1KW more for an overall power dissipation to be <5KW.

Figure 9: The number of RTX 3090-based 4 kW SµDCs needed to
support applications for various resolutions and early discard rates.

Figure 10: Two SµDCs in ‘ring’ network topologies

7 COMMUNICATION AS A SPACE
MICRODATACENTER BOTTLENECK

The above analysis did not consider communication of EO data
from the satellites to an SµDC. Fig. 10 shows a small constellation
supported by two SµDCs in ‘ring’ topology [76]. Data from distant
EO satellites is relayed to the SµDC by more proximal EO satellites.
Thus, the number of connected EO satellites is potentially limited
by the capacity of the ISL between the SµDC and the closest EO
satellites.

A ring topology in which the SµDCs are part of the same or-
bit as the EO satellites has clear benefits. By flying the SµDCs in
formation with the EO satellites and using a fixed ring topology,
ISLs are also fixed. This is important when ISLs are optical, since
optical ISLs can take seconds or even minutes to orient [15, 64].
Small satellites which contain optical ISLs often orient the ISL by
rotating the entire satellite [64]. This means that the satellite can-
not perform simultaneous communication and imaging. However,
by using a ring topology with fixed distance and angle between
satellites, satellite designers can design the ISL and camera such
that they are usable simultaneously.

If one SµDC can support the computation of 𝑛 satellites, but the
capacity limitation of the ISL between the SµDC and the closest EO
satellites dictates that the SµDC can only receive data from𝑚 < 𝑛
satellites, then the number of clusters (and thus SµDCs) needed
is 64

𝑚 > 64
𝑛 . In this case, the constellation is ISL-bottlenecked. If

𝑚 ≥ 𝑛, the constellation is ISL-unconstrained.
For lightweight applications, theminimal number of SµDCs that

are needed in a ring topologymay not be set by the total amount of
computation required, but rather by the number required to mit-
igate the ISL bottleneck. Table 8 shows how many EO satellites
an SµDC can support before becoming ISL-bottlenecked at various
data rates and for several ISL capacities based on RF [92, 134] and
optical [28, 78] LEO to LEO ISLs. This table assumes that a base (at
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3m) 4K RGB image is generated every 1.5 s on each EO, and trans-
mitted via ISL to the SµDC. As resolution improves, so does the
number of pixels in the image (i.e., the imaged area remains con-
stant). In a ring topology, the limiting links are the ones between
the SµDC and its adjacent EO satellites. Thus, for example, at 3m
resolution and 1Gbit s−1 ISL capacity, each ISL can support trans-
mitting over four images every 1.5 s. Since the SµDC has two ISL
receivers, it can support up to nine EO satellites.

The results show that < 100Gbit s−1 ISLs are often insufficient
to support even a single EO satellite for high data rates. Even 100Gbit
s−1 ISLs fail at 10 cm resolutions. On the other hand, a single SµDC
can support a large number of EO satellites at low data genera-
tion rates (i.e., coarse resolution and high early discard rates) —
more than what would realistically be placed into a single orbital
plane. This table data, combined with Fig. 9 indicates when ISL-
bottlenecks or computational requirements dictate the number of
SµDCs needed. Fig. 11 shows that the number of clusters, and thus
SµDCs, is set by the ISL-bottlenecks for many applications — espe-
cially for high-power SµDCs. As ISL capacity increases, the bottle-
neck goes away, and the number of clusters required matches the
number of SµDCs needed to support the computation, as in Fig. 9.

In general, it is preferable for a constellation to be ISL uncon-
strained, as an ISL bottlenecked constellation means more SµDCs
are launched than are strictly required based on computational
power requirements.This increases constellation equipment, launch,
and management costs.

Our results also show that ISLs considerations can have impor-
tant influence on SµDC design for lightweight applications — high
power SµDCs are more likely to be ISL-bottlenecked than a low
power SµDCs. They also suggest that ISL network topology may
play an important role in enabling high SµDC utilization. Thus ISL
considerations will impact EO/SµDC satellite constellation design.

Table 8: The number of EO satellites supportable by a single SµDC
using ring topology for various data generation rates for ISLs with
capacity 1Gbit s−1, 10Gbit s−1 and 100Gbit s−1.

Early Discard Rate Resolution 1Gbit s−1 10Gbit s−1 100Gbit s−1 Resolution 1Gbit s−1 10Gbit s−1 100Gbit s−1

0

3m

9 98 992

1m

1 10 110
0.5 18 198 1986 2 22 220
0.95 198 1986 19868 22 220 2206
0.99 992 9934 99340 110 1102 11036
0

30 cm

0 0 8

10 cm

0 0 0
0.5 0 0 18 0 0 2
0.95 0 18 198 0 2 22
0.99 8 98 992 0 10 110

8 SPACE MICRODATACENTER AND
COMMUNICATION CO-DESIGN

One way to mitigate an ISL-bottleneck in context of SµDCs is to
modify the network topology to increase the amount of data on-
boarded onto the SµDCs. Figure 12a shows how, by adding more
receivers to a SµDC, the cluster topology can be changed from a
ring, or ‘2-list’, to a ‘4-list’, or, more arbitrarily, a ‘𝑘-list’ for even 𝑘 .
While this may not help RF communication-based constellations
due to limited available bandwidth, tremendous amounts of band-
width is available in the optical frequencies, allowing linear growth
in incoming data rate with the number of optical receivers [136].
Thus, for optical ISLs, 𝑘-lists for 𝑘 > 2 can be used to increase

the SµDC’s incoming data rate at the cost of additional optical re-
ceivers on the SµDC and additional transmit power.

As 𝑘 increases, the link distance between relay satellites grows.
Optical ISL transmit power grows quadratically with distance [88],
meaning a 4-list’s ISLs consume 4× the power of a 2-list (while
also transmitting 2× the data). Also, this distance can eventually
grow to such an extent that the ISL must aim through significant
amounts of atmosphere. This results in atmospheric turbulence in-
duced fading of the optical signal [162], degrading the channel ca-
pacity. If the distance is large enough, then the Earth’s landmass
will directly block the signal. The specific value of 𝑘 for which
distance becomes a concern is dependent on the constellation’s
formation: for evenly distributed — ‘orbit spaced’ — formations,
maximum 𝑘 is smaller than for tightly packed formations in which
satellites are relatively close to one another.

Alternatively, SµDCs can be split Figure 12b — increasing the
number of clusters in a ring-topology without increasing the com-
pute power of the SµDCs in aggregate. By using smaller split SµDCs,
costs associatedwith higher cluster counts (e.g., launch cost, booster
fuel requirements, etc.) are mitigated. SµDC splitting is effectively
a form of disaggregation, and thus can lead to increased total launch
costs and constellation management costs. However, SµDC split-
ting is effective for all constellation formations, including orbit-
spaced constellations which may see limited benefit from 𝑘-list
topologies.

SµDC splitting and 𝑘-list topologies can be used in conjunction.
Their benefits are orthogonal, and the increase in aggregate data
rate into SµDCs scalesmulti-linearlywith number of clusters (from
splitting), and number of links into each SµDC (from 𝑘-lists). That
is, the number of EO satellites supported by a 𝑘-list topology clus-
ter is 𝑘

2 times those shown in Table 8, while SµDC splitting multi-
plies the number of clusters. Figure 13 shows that 𝑘-lists combined
with SµDC splitting leads to significantly increased ISL communi-
cation capacity (the rate at which data can be transmitted from an
EO satellite to an SµDC) in a frame-spaced constellation.

9 IMPACT OF CHIP ARCHITECTURE,
RADIATION, PLACEMENT, ETC.

Section 5 looks at commodity GPUs as the computer architecture
in a SµDC since these are easily programmable, abundant, and per-
form well on image processing workloads. However, it is unclear
that GPUs are the best architecture for SµDCs. GPUs are designed
for applications with latency considerations (e.g., customer satis-
faction [1], real-time video processing [5], etc.), while many satel-
lite applications do not have stringent latency requirements (e.g.,
TM, APP, AD, CM, LSC, FQE). For such applications, energy effi-
ciency is the most important metric. As such, alternate architec-
tures (i.e., accelerators) or computing regimes (e.g., near-threshold
computing) may be attractive. In the recent MLPerf [117] v3.0 com-
petition [96, 97], theQualcomm Cloud AI 100 was the most energy
efficient architecture for offline batch image processing inference
tasks — > 2.5× better than the NVIDIA A100 and nearly 2× bet-
ter than the NVIDIA H100. We also compare Qualcomm Cloud
AI 100 to RTX 3090 — the accelerator is 18.25× more energy effi-
cient on MLPerf workloads. With this energy efficiency, Figure 14
estimates the the number of 4KW SµDCs needed to support EO
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(a) 1Gbit s−1 (b) 10Gbit s−1

(c) 10Gbit s−1 (d) 100Gbit s−1

(e) 100Gbit s−1 (f) Infinite capacity ISLs.

Figure 11: For 4 kW SµDCs, ISL bottlenecks occur formany applications for ISL channels< 100Gbit s−1 (Left). For 256 kW SµDCs, ISL bottlenecks
persist, even with high capacity ISLs in a ring topology (Right).

(a) A ‘4-list’ topology. (b) SµDC Splitting.

Figure 12: An ISL-bottleneck can be resolved by (a) increasing the
number of incoming edges to each SµDC, or (b) increasing the num-
ber of SµDCs (while proportionally decreasing the computational
power of each SµDC).

satellite applications at various resolutions and early discard rates
using a Qualcomm Cloud AI 100 rather than a RTX 3090 (Fig. 9).
The results show that AI 100 enables more applications to be sup-
ported at finer resolutions and with lower early discard rates with
only a small number of SµDCs. The significant benefits relative to
even the most state-of-the-art GPUs (A100, H100) suggests that
SµDCs would benefit from incorporating an architecture focused
on energy efficiency. In general, unlike compression-based or RF
communication-based approaches, SµDCs scale with technology
and architectural developments, and thus the number and com-
plexity of applications they can support will grow in the future.

Figure 13: The total ISL communication capacity, defined as the
rate at which data is transmitted from EO satellites to SµDCs, and
total ISL transmission power consumption for various 𝑘-list topolo-
gies and SµDC splitting factors. Values are normalized against a 2-
list (ring) with out splitting SµDCs.

We assume that SµDCs will use radiation-hardened SBCs such
as the BAE Systems’ RAD750 [13] for flight control. For data pro-
cessing, however, we note that SµDCs are based in LEO. LEO satel-
lites experience much less radiation (e.g., 1 krad/year of gamma
radiation [101]) than MEO and GEO, except in the South Atlantic
Anomaly (SAA) [65], so use of COTS hardware, instead of radiation-
hardened hardware, is common [58, 129], especially for CubeSats [24]
- an ITAR regulated hardened component that tolerates 300 krad [9]
is significant overdesign for LEO.

We believe that SµDCs can also use non-hardened COTS GPU
and accelerator hardware, especially since many COTS hardware,
including NVIDIA Xavier studied in the paper, already show good
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radiation tolerance [120]3. NASA’s Ingenuity helicopter on Mars
already uses non-hardened COTS Snapdragon 801 GPU SoC to per-
form in-flight image processing and guidance tasks [143], NASA
is already using non-hardened EdgeTPUs for CubeSats [58]. The
effects of the SAA can be mitigated either through pausing com-
putation while the SµDC passes through the SAA, or by apply-
ing additional software-based hardening while in the SAA (ISS’s
SBC-2 [47] andMISSE-7 mission [158] show feasibility of software-
based radiation hardening on COTS hardware). There is already a
large body of research on software based hardening for GPUs [22,
56, 111, 116].

We note also that our workloads are largely ML workloads. Due
to inherent algorithmic resilience to radiation-induced bit-flip er-
rors for such workloads [125], the overhead of software-based soft-
error hardeningwill be low: 18% [3],<5% for convolution layers [132].

Finally, radiation exposure can be reduced by bus design — this
is OrbitsEdge’s approach with their SatFrame [106].

Figure 14: Non-GPU architectures which focus on energy effi-
ciency are highly effective on themassively parallel, latency uncon-
strained workloads in EO satellite applications.

The orbital placement of the SµDC can impact its cost and effec-
tiveness. Since LEO EO constellations typically place many satel-
lites in the same orbital plane at the same altitude, perhaps the
most obvious orbit to give the SµDC is the same orbit as the satel-
lites it supports. This also enables a fixed ‘ring’ or 𝑘-list network
topology, as discussed above. However, the satellites need signifi-
cant boosting [90] at lower altitude to prevent atmospheric drag
from causing them to crash into Earth. Thus, a second possible
placement for an SµDC is in the same orbital plane, but at a higher
altitude, to limit the amount of boosting needed for the larger SµDC.
Unfortunately, angular velocity of a satellite’s orbit decreases with
altitude, meaning a static network topology is no longer possible.
This may not be a significant issue for RF-based ISLs, which can
be quickly aimed via beamforming [109], but high-capacity opti-
cal ISLs require pointing which can take seconds or even minutes
to perform [15, 64]. Another possible location for SµDCs is in geo-
stationary (GEO) orbit. A GEO orbit is a 36 000 km equatorial orbit
in which the satellite is located above a fixed location on Earth (i.e.,
the angular velocity of the satellite is equal to the angular velocity
of Earth’s rotation about its axis). This means a collection of three
SµDCs in GEO could provide continuous support for LEO EO satel-
lites. Drawbacks of GEO positioning include greater launch cost
due to higher altitude, and need for increased radiation hardening,

3GPU4S team [82] specifically states that “LEO [missions] will likely adopt COTS
GPUs first, due to the more limited exposure to radiation.”

since GEO orbits are in Earth’s outer Van Allen belt, which con-
tains higher energy radiation than the inner Van Allen belt [29].

Placement also impacts the design of SµDCs. Lower altitude (cir-
cular) orbits spend more time in an eclipsed region, where access
to sunlight is blocked by Earth. LEO satellites spend ∼ 1

3 of their
time eclipsed, while GEO satellites spend most of the year without
eclipse — GEO satellites experience small amounts (< 45min d−1)
of eclipsed time in an eclipse for several weeks before and after the
two equinoxes. Thus, SµDCs in LEO must support greater power
generation than SµDCs in GEO in order to support the same com-
putational workload. Likewise, SµDCs in LEO will need boosting
capabilities in order to extend lifetime. GEO requires less boost-
ing than LEO as discussed above meaning lifetime of SµDCs in
GEO may be considerably longer than in LEO. This means that
SµDCs in GEO will need additional radiation hardening and hard-
ware redundancy. Additionally, the ‘sun-setting’ or retirement of
satellites differs between the two. GEO satellites are retired by in-
creasing their altitude by ∼ 300 km into a ‘graveyard’ orbit, while
LEO satellites are retired by lowering their altitude into a ‘disposal’
orbit in which atmospheric friction destroys the satellites. In GEO,
since satellites can stay in orbit indefinitely, back-up hardware is
also used to extend the lifetime of a satellite [91], especially as GEO
satellite mission lifetimes are often longer than commodity hard-
ware lifetimes (∼ 15 years for GEO satellites [67] vs as low as four
years for commodity hardware [95]).

Also, SµDCs in GEO have the benefit of lowered ISL-bottleneck.
AGEO-based ISL-bottleneckmitigation strategy uses the increased
optical ISL count of 𝑘-lists, but changes the network topology to
three dynamic star-clusters inwhich the SµDCs are in GEO, as seen
in Fig.15. Numerous works demonstrate high capacity, low power
LEO-GEO ISLs [2, 64]. By using three SµDCs spaced 120◦ apart,
each EO satellite is guaranteed to have line of sight with at least
one SµDC at all times. Benefits to this approach are that very large
SµDCs can be used with mitigated ISL capacity concerns.

Figure 15: Three SµDCs are placed in GEO, ensuring all EO satel-
lites have LOS with at least one SµDC at all times.

A SµDC will produce large amounts of heat waste. As such, dis-
sipation of heat is an important SµDC design consideration. Some
heat may be dissipated using thermocouples, as in RTG powered
systems, and as has been argued for use in terrestrial datacenters [161].
Excess heat is also an issue in space for infra-red cameras and other
heat sensitive payloads, and thus numerous thermal control sub-
system design approaches are in use, including radiating surfaces,
heat transport and heat conductive lines [73], thermoelectric cool-
ers [69], and design via evolutionary algorithm [49].

The discussion in this paper assumes a monolithic implementa-
tion of an SµDC. A disaggregated SµDC may also be interesting. In
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Table 9: Comparison of downlink deficit mitigation strate-
gies.

SµDCs Homogeneous Compute Compression RF Comms

Scales to Future Resolution Targets Yes Yes No No
High Power Yes Yes No Yes

Requires ISLs Yes No No No
Adaptive to Mission Changes Yes No No No

a disaggregated spacecraft design [32], a large satellite is divided
into sub-components. These sub-components are placed on their
own buses and launched in close proximity to one another, lead-
ing to a single logical satellite composed out of several physical
satellites. The physical satellites communicate with one another
over high capacity, short range ISLs, and can even perform wire-
less power transfer with high efficiency [87]. With a disaggregated
design, existing SµDCs can be augmented with additional compute
hardware and power generation as needed to support changes to
the EO constellation mission. Disaggregated design can also help
to increase satellite resilience, and also can lower cost when sub-
systems malfunction, since only a replacement for the subsystem
must be launched, rather than a full satellite. Disaggregated de-
sign, though, has higher costs, than aggregated design, since de-
sign complexity (and thus testing requirements) and total design
mass are increased. In the case of an SµDC, this may be acceptable,
due to its high power requirements. While compute hardware lasts
for years (and may be outdated before it malfunctions), solar pan-
els last for decades [79]. For SµDCs, disaggregating power genera-
tion and compute may make sense, especially for large SµDCs in
GEO, where compute hardware is susceptible to damage from high
energy outer van Allen belt radiation.

Table 9 compares the different techniques for dealingwith down-
link deficit. Unlike SµDCs, techniques based on early discard and
compression, increasing RF channel capacities, or homogeneous
constellations with more powerful EO satellites do not scale to fu-
ture resolution targets, or are not adaptive to changes in EO satel-
lite mission or algorithmic developments.

Figure 16 shows the impact of radiation hardening overhead.
In 16a, software-based radiation hardeningwith overhead of 20% [3]
is used. In 16b and 16c, 2× and 3× redundancy is used, leading
to high overheads. At course resolution, radiation hardening has
negligible impact — for most applications, the number of SµDCs
needed is unchanged. The same is true even at 1m with high early
discard rate. However, at fine resolutions, and especially with low
early discard rates, the impact is significant, especially for redun-
dancy based hardening. For example, at 30 cm and 50% early dis-
card, 3× SµDCs are needed to support a constellation. For software
based hardening, this number is unchanged, but for double and
triple redundancy, it increases to 5 and 8, respectively.Thus, we an-
ticipate software-based radiation hardening will be the most com-
mon solution to radiation hardening in SµDCs.

10 SUMMARY AND CONCLUSION
In this work, we observe that future EO satellites will generate
so much data that this data cannot be transmitted to Earth due
to limited capacity of communication that exists between space
and Earth.We showed that conventional data reduction techniques
such as compression [126] and early discard [41] do not solve this

(a) 20% Overhead

(b) 100% Overhead

(c) 200% Overhead

Figure 16: The impact of radiation tolerance overhead on
SµDC equipped constellations.

problem, nor does a direct enhancement of today’s RF-based infras-
tructure [133, 153] for space-Earth communication. We explored
an unorthodox solution instead - moving to space the computa-
tion that would have happened on the ground. This alleviates the
need for data transfer to Earth. We analyzed ten non-longitudinal
RGB and hyperspectral image processing Earth observation appli-
cations for their computation and power requirements and dis-
covered that these requirements could not be met by the small
satellites that dominate today’s EO missions. We made a case for
space microdatacenters (SµDCs) - computational satellites tasked
to support in-space computation of EO data. We showed that one
4KW space microdatacenter can support the computation need of
a majority of applications. To address the communication bottle-
neck between EO satellites and SµDCs, we proposed three space
microdatacenter-communication co-design strategies –𝑘−𝑙𝑖𝑠𝑡-based
network topology, microdatacenter splitting, andmoving spacemi-
crodatacenters to geostationary orbit. These techniques enable ef-
fective usage of SµDCs.
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